Simd Library Documentation.

Home | Release Notes | Download | Documentation | Issues | GitHub | SourceForge
ConvolutionalLayer Class Reference

ConfolutionLayer class. More...

Inheritance diagram for ConvolutionalLayer:

Public Member Functions

 ConvolutionalLayer (Function::Type f, const Size &srcSize, size_t srcDepth, size_t dstDepth, const Size &coreSize, bool valid=true, bool bias=true, const View &connection=View())
 Creates new ConfolutionLayer class. More...
- Public Member Functions inherited from Layer
virtual ~Layer ()

Additional Inherited Members

- Public Types inherited from Layer
enum  Type {
enum  Method {

Detailed Description

ConfolutionLayer class.

Convolutional layer in neural network.

Constructor & Destructor Documentation

◆ ConvolutionalLayer()

ConvolutionalLayer ( Function::Type  f,
const Size srcSize,
size_t  srcDepth,
size_t  dstDepth,
const Size coreSize,
bool  valid = true,
bool  bias = true,
const View connection = View() 

Creates new ConfolutionLayer class.

[in]f- a type of activation function used in this layer.
[in]srcSize- a size (width and height) of input image.
[in]srcDepth- a number of input channels (images).
[in]dstDepth- a number of output channels (images).
[in]coreSize- a size of convolution core.
[in]valid- a boolean flag (True - only original image points are used in convolution, so output image is decreased; False - input image is padded by zeros and output image has the same size). By default its true.
[in]bias- a boolean flag (enabling of bias). By default its True.
[in]connection- a table of connections between input and output channels. By default all channels are connected.